Муниципальное казённое общеобразовательное учреждение «Подборовская основная общеобразовательная школа»

Рассмотрена на заседании педагогического совета Протокол № 5 от «30» августа 2016 года

Утверждена Приказом МКОУ «Подборовская ООШ» от «31» августа 2016 года №137

Рабочая учебная программа по химии 8 – 9 классы

Учитель: Бабукова Н.В.

1. Планируемые результаты освоения учебного предмета «Химия 8-9 классов»

ТРЕБОВАНИЯ К УРОВНЮ ПОДГОТОВКИ ВЫПУСКНИКОВ

Выпускник научится:

- описывать свойства твёрдых, жидких, газообразных веществ, выделяя их существенные признаки;
- характеризовать вещества по составу, строению и свойствам, устанавливать причинно-следственные связи между данными характеристиками вещества;
- раскрывать смысл основных химических понятий «атом», «молекула», «химический элемент», «простое вещество», «сложное вещество», «валентность», используя знаковую систему химии;
- изображать состав простейших веществ с помощью химических формул и сущность химических реакций с помощью химических уравнений;
- вычислять относительную молекулярную и молярную массы веществ, а также массовую долю химического элемента в соединениях для оценки их практической значимости;
 - сравнивать по составу оксиды, основания, кислоты, соли;
- классифицировать оксиды и основания по свойствам, кислоты и соли по составу;
 - пользоваться лабораторным оборудованием и химической посудой;
- проводить несложные химические опыты и наблюдения за изменениями свойств веществ в процессе их превращений; соблюдать правила техники безопасности при проведении наблюдений и опытов;
- различать экспериментально кислоты и щёлочи, пользуясь индикаторами; осознавать необходимость соблюдения мер безопасности при обращении с кислотами и щелочами.
 - раскрывать смысл периодического закона Д. И. Менделеева;
- описывать и характеризовать табличную форму периодической системы химических элементов;

- характеризовать состав атомных ядер и распределение числа электронов по электронным слоям атомов химических элементов малых периодов периодической системы, а также калия и кальция;
- различать виды химической связи: ионную, ковалентную полярную, ковалентную неполярную и металлическую;
- изображать электронно-ионные формулы веществ, образованных химическими связями разного вида;
- выявлять зависимость свойств веществ от строения их кристаллических решёток: ионных, атомных, молекулярных, металлических;
- характеризовать химические элементы и их соединения на основе положения элементов в периодической системе и особенностей строения их атомов;
- характеризовать научное и мировоззренческое значение периодического закона и периодической системы химических элементов Д. И. Менделеева; объяснять суть химических процессов и их принципиальное отличие от физических;
 - называть признаки и условия протекания химических реакций;
- устанавливать принадлежность химической реакции к определённому типу по одному из классификационных признаков: 1) по числу и составу исходных веществ и продуктов реакции (реакции соединения, разложения, замещения и обмена); 2) по выделению или поглощению теплоты (реакции экзотермические и эндотермические); 3) по изменению степеней окисления химических элементов (реакции окислительно-восстановительные); 4) по обратимости процесса (реакции обратимые и необратимые);
- составлять уравнения электролитической диссоциации кислот, щелочей, солей; полные и сокращённые ионные уравнения реакций обмена; уравнения окислительно-восстановительных реакций;
- прогнозировать продукты химических реакций по формулам/названиям исходных веществ; определять исходные вещества по формулам/названиям продуктов реакции;

- составлять уравнения реакций, соответствующих последовательности («цепочке») превращений неорганических веществ различных классов;
- выявлять в процессе эксперимента признаки, свидетельствующие о протекании химической реакции;
- приготовлять растворы с определённой массовой долей растворённого вещества;
- определять характер среды водных растворов кислот и щелочей по изменению окраски индикаторов;
- проводить качественные реакции, подтверждающие наличие в водных растворах веществ отдельных ионов
- определять принадлежность неорганических веществ к одному из изученных классов/групп: металлы и неметаллы, оксиды, основания, кислоты, соли;
 - составлять формулы веществ по их названиям;
 - определять валентность и степень окисления элементов в веществах;
- составлять формулы неорганических соединений по валентностям и степеням окисления элементов, а также зарядам ионов, указанным в таблице растворимости кислот, оснований и солей;
- объяснять закономерности изменения физических и химических свойств простых веществ (металлов и неметаллов) и их высших оксидов, образованных элементами второго и третьего периодов;
- называть общие химические свойства, характерные для групп оксидов: кислотных, основных;
- называть общие химические свойства, характерные для каждого из классов неорганических веществ: кислот, оснований, солей;
- приводить примеры реакций, подтверждающих химические свойства неорганических веществ: оксидов, кислот, оснований и солей;
- определять вещество-окислитель и вещество-восстановитель в окислительно-восстановительных реакциях;

- составлять окислительно-восстановительный баланс (для изученных реакций) по предложенным схемам реакций;
- проводить лабораторные опыты, подтверждающие химические свойства основных классов неорганических веществ;

Выпускник получит возможность научиться:

- грамотно обращаться с веществами в повседневной жизни;
- осознавать необходимость соблюдения правил экологически безопасного поведения в окружающей природной среде;
- понимать смысл и необходимость соблюдения предписаний, предлагаемых в инструкциях по использованию лекарств, средств бытовой химии и др.;
- использовать приобретённые ключевые компетентности при выполнении исследовательских проектов по изучению свойств, способов получения и распознавания веществ;
- развивать коммуникативную компетентность, используя средства устной и письменной коммуникации при работе с текстами учебника и дополнительной литературой, справочными таблицами, проявлять готовность к уважению иной точки зрения при обсуждении результатов выполненной работы;
- объективно оценивать информацию о веществах и химических процессах, критически относиться к псевдонаучной информации, недобросовестной рекламе, касающейся использования различных веществ.
- осознавать значение теоретических знаний для практической деятельности человека;
- описывать изученные объекты как системы, применяя логику системного анализа;
- применять знания о закономерностях периодической системы химических элементов для объяснения и предвидения свойств конкретных веществ;

- развивать информационную компетентность посредством углубления знаний об истории становления химической науки, её основных понятий, периодического закона как одного из важнейших законов природы, а также о современных достижениях науки и техники.
- составлять молекулярные и полные ионные уравнения по сокращённым ионным уравнениям;
- приводить примеры реакций, подтверждающих существование взаимосвязи между основными классами неорганических веществ;
- прогнозировать результаты воздействия различных факторов на изменение скорости химической реакции;
- прогнозировать результаты воздействия различных факторов на смещение химического равновесия.
- прогнозировать химические свойства веществ на основе их состава и строения;
- прогнозировать способность вещества проявлять окислительные или восстановительные свойства с учётом степеней окисления элементов, входящих в его состав;
- выявлять существование генетической взаимосвязи между веществами в ряду: простое вещество оксид гидроксид соль;
- организовывать, проводить ученические проекты по исследованию свойств веществ, имеющих важное практическое значение.

Личностными результатами изучения предмета «Химия» в 8-9 классе являются следующие умения:

- •осознавать единство и целостность окружающего мира, возможности его познаваемости и объяснимости на основе достижений науки;
- •постепенно выстраивать собственное целостное мировоззрение: осознавать потребность и готовность к самообразованию, в том числе и в рамках самостоятельной деятельности вне школы;
- •оценивать жизненные ситуации с точки зрения безопасного образа жизни и сохранения здоровья;

- •оценивать экологический риск взаимоотношений человека и природы.
- •формировать экологическое мышление: умение оценивать свою деятельность и поступки других людей с точки зрения сохранения окружающей среды гаранта жизни и благополучия людей на Земле.

Метапредметными результатами изучения курса «Химия» является формирование универсальных учебных действий (УУД).

Регулятивные УУД:

- •самостоятельно обнаруживать и формулировать учебную проблему, определять цель учебной деятельности;
- •выдвигать версии решения проблемы, осознавать конечный результат, выбирать из предложенных и искать самостоятельно средства достижения цели;
 - •составлять (индивидуально или в группе) план решения проблемы;
- •работая по плану, сверять свои действия с целью и, при необходимости, исправлять ошибки самостоятельно;
- •в диалоге с учителем совершенствовать самостоятельно выработанные критерии оценки.

Познавательные УУД:

- •анализировать, сравнивать, классифицировать и обобщать факты и явления. Выявлять причины и следствия простых явлений.
- •осуществлять сравнение, классификацию, самостоятельно выбирая основания и критерии для указанных логических операций;
- •строить логическое рассуждение, включающее установление причинно-следственных связей.
- •создавать схематические модели с выделением существенных характеристик объекта.
 - •составлять тезисы, различные виды планов (простых, сложных и т.п.).
- •преобразовывать информацию из одного вида в другой (таблицу в текст и пр.).

•уметь определять возможные источники необходимых сведений, производить поиск информации, анализировать и оценивать её достоверность.

Коммуникативные УУД:

Самостоятельно организовывать учебное взаимодействие в группе (определять общие цели, распределять роли, договариваться друг с другом и т.д.).

Предметными результатами изучения предмета являются следующие умения:

- •осознание роли веществ:
- определять роль различных веществ в природе и технике;
- объяснять роль веществ в их круговороте.
- •рассмотрение химических процессов:
- приводить примеры химических процессов в природе;
- находить черты, свидетельствующие об общих признаках химических процессов и их различиях.
 - •использование химических знаний в быту:
 - объяснять значение веществ в жизни и хозяйстве человека.
 - •объяснять мир с точки зрения химии:
 - перечислять отличительные свойства химических веществ;
 - различать основные химические процессы;
 - определять основные классы неорганических веществ;
 - понимать смысл химических терминов.
- •овладение основами методов познания, характерных для естественных наук:
- характеризовать методы химической науки (наблюдение, сравнение, эксперимент, измерение) и их роль в познании природы;
- проводить химические опыты и эксперименты и объяснять их результаты.

- •умение оценивать поведение человека с точки зрения химической безопасности по отношению к человеку и природе:
- использовать знания химии при соблюдении правил использования бытовых химических препаратов;
 - различать опасные и безопасные вещества.

2. Содержание тем учебного предмета

8 класс

Тема 1. Введение в химию (4 ч)

Химия — наука о веществах, их свойствах и превращениях.

Понятие о химическом элементе и формах его существования: свободных атомах, простых и сложных вещества

Превращения веществ. Отличие химических реакций от физических явлений. Роль химии в жизни человека.

Краткие сведения из истории возникновения и развития химии. Период алхимии. Понятие о философском камне. Химия в XVI в. Развитие химии на Руси. Роль отечественных ученых в становлении химической науки - работы М. В. Ломоносова, А. М. Бутлерова, Д. И. Менделеева.

Химическая символика. Знаки химических элементов и происхождение их названий. Химические формулы. Индексы и коэффициенты. Относительные атомная и молекулярная массы. Расчет массовой доли химического элемента по формуле вещества.

Периодическая система химических элементов Д. И. Менделеева, ее структура: малые и большие периоды, группы и подгруппы (главная и побочная). Периодическая система как справочное пособие для получения сведений о химических элементах.

Предметные результаты обучения:

- •использовать при характеристике веществ понятия: «атом», «молекула», «химический элемент», «химический знак, или символ», «вещество», «простое вещество», «сложное вещество», «свойства веществ», «химические явления», «физические явления», «коэффициенты», «индексы», «относительная атомная масса», «относительная молекулярная масса», «массовая доля элемента»;
- •знать: предметы изучения естественнонаучных дисциплин, в том числе химии; химические символы, их названия и произношение;
 - •классифицировать вещества по составу на простые и сложные;

- •различать: тела и вещества; химический элемент и простое вещество;
- •описывать: формы существования химических элементов (свободные атомы, простые вещества, сложные вещества); табличную форму Периодической системы химических элементов; положение элемента в таблице Д. И. Менделеева, используя понятия «период», «группа», «главная подгруппа», «побочная подгруппа»; свойства веществ (твердых, жидких, газообразных);
- •объяснять сущность химических явлений (с точки зрения атомномолекулярного учения) и их принципиальное отличие от физических явлений;
- •характеризовать: основные методы изучения естественных дисциплин (наблюдение, эксперимент, моделирование); вещество по его химической формуле согласно плану: качественный состав, тип вещества (простое или сложное), количественный состав, относительная молекулярная масса, соотношение масс элементов в веществе, массовые доли элементов в веществе (для сложных веществ); роль химии (положительную и отрицательную) в жизни человека, аргументировать свое отношение к этой проблеме;
- •вычислять относительную молекулярную массу вещества и массовую долю химического элемента в соединениях;
- •проводить наблюдения свойств веществ и явлений, происходящих с веществами;
- •соблюдать правила техники безопасности при проведении наблюдений и лабораторных опытов.

Метапредметные результаты обучения

- •определять проблемы, т. е. устанавливать несоответствие между желаемым и действительным;
 - •составлять сложный план текста;
 - •владеть таким видом изложения текста, как повествование;

- •под руководством учителя проводить непосредственное наблюдение;
- •под руководством учителя оформлять отчет, включающий описание наблюдения, его результатов, выводов;
- •использовать такой вид мысленного (идеального) моделирования, как знаковое моделирование (на примере знаков химических элементов, химических формул);
- •использовать такой вид материального (предметного) моделирования, как физическое моделирование (на примере моделирования атомов и молекул);
 - •получать химическую информацию из различных источников;
 - •определять объект и аспект анализа и синтеза;
- •определять компоненты объекта в соответствии с аспектом анализа и синтеза;
- •осуществлять качественное и количественное описание компонентов объекта;
 - •определять отношения объекта с другими объектами;
 - •определять существенные признаки объекта.

Тема 2. Атомы химических элементов (10 ч)

Атомы как форма существования химических элементов. Основные сведения о строении атомов. Доказательства сложности строения атомов. Опыты Резерфорда. Планетарная модель строения атома.

Состав атомных ядер: протоны и нейтроны. Относительная атомная масса. Взаимосвязь понятий «протон», «нейтрон», «относительная атомная масса».

Изменение числа протонов в ядре атома - образование новых химических элементов.

Изменение числа нейтронов в ядре атома - образование изотопов. Современное определение понятия «химический элемент». Изотопы как разновидности атомов одного химического элемента.

Электроны. Строение электронных оболочек атомов химических элементов №1-20 периодической системы Д. И. Менделеева. Понятие о завершенном и незавершенном электронном слое (энергетическом уровне).

Периодическая система химических элементов Д. И. Менделеева и строение атомов: физический смысл порядкового номера элемента, номера группы, номера периода.

Изменение числа электронов на внешнем электронном уровне атома химического элемента - образование положительных и отрицательных ионов. Ионы, образованные атомами металлов и неметаллов. Причины изменения металлических и неметаллических свойств в периодах и группах.

Образование бинарных соединений. Понятие об ионной связи. Схемы образования ионной связи.

Взаимодействие атомов химических элементов-неметаллов между собой - образование двухатомных молекул простых веществ. Ковалентная неполярная химическая связь.

Электронные и структурные формулы.

Взаимодействие атомов химических элементов-неметаллов между собой - образование бинарных соединений неметаллов. Электроотрицательность. Понятие о ковалентной полярной связи.

Взаимодействие атомов химических элементов-металлов между собой - образование металлических кристаллов. Понятие о металлической связи.

Демонстрации. Модели атомов химических элементов. Периодическая система химических элементов Д. И. Менделеева.

Контрольная работа по разделу.

Предметные результаты обучения

Учащийся должен уметь:

•использовать при характеристике атомов понятия: «протон»,

«нейтрон», «электрон», «химический элемент», «массовое число», «изотоп», «электронный слой», «энергетический уровень», «элементы-металлы», «элементы-неметаллы»; при характеристике веществ понятия «ионная связь», «ионы», «ковалентная неполярная связь», «ковалентная полярная связь», «электроотрицательность», «валентность», «металлическая связь»;

- •описывать состав и строение атомов элементов с порядковыми номерами 1—20 в Периодической системе химических элементов Д. И. Менделеева:
- •составлять схемы распределения электронов по электронным слоям в электронной оболочке атомов; схемы образования разных типов химической связи (ионной, ковалентной, металлической);
- •объяснять закономерности изменения свойств химических элементов (зарядов ядер атомов, числа электронов на внешнем электронном слое, число заполняемых электронных слоев, радиус атома, электроотрицательность, металлические и неметаллические свойства) в периодах и группах (главных подгруппах) Периодической системы химических элементов Д. И. Менделеева с точки зрения теории строения атома;
- •сравнивать свойства атомов химических элементов, находящихся в одном периоде или главной подгруппе Периодической системы химических элементов Д. И. Менделеева (зарядов ядер атомов, числа электронов на внешнем электронном слое, число заполняемых электронных слоев, радиус атома, электроотрицательность, металлические и неметаллические свойства);
- •давать характеристику химических элементов по их положению в И. Периодической системе химических элементов Д. Менделеева (химический порядковый знак, номер, период, группа, подгруппа, относительная атомная масса, строение атома — заряд ядра, число протонов и нейтронов в ядре, общее число электронов, распределение электронов по электронным слоям);
 - •определять тип химической связи по формуле вещества;

- •приводить примеры веществ с разными типами химической связи;
- •характеризовать механизмы образования ковалентной связи (обменный), ионной связи, металлической связи;
- •устанавливать причинно-следственные связи: состав вещества тип химической связи;
 - •составлять формулы бинарных соединений по валентности;
 - •находить валентность элементов по формуле бинарного соединения.

Метапредметные результаты обучения

Учащийся должен уметь:

- •формулировать гипотезу по решению проблем;
- •составлять план выполнения учебной задачи, решения проблем творческого и поискового характера, выполнения проекта совместно с учителем;
 - •составлять тезисы текста;
 - •владеть таким видом изложения текста, как описание;
- •использовать такой вид мысленного (идеального) моделирования, как знаковое моделирование (на примере составления схем образования химической связи);
- •использовать такой вид материального (предметного) моделирования, как аналоговое моделирование;
- •использовать такой вид материального (предметного) моделирования, как физическое моделирование (на примере моделей строения атомов);
 - •определять объекты сравнения и аспект сравнения объектов;
 - •выполнять неполное однолинейное сравнение;
 - •выполнять неполное комплексное сравнение;
 - •выполнять полное однолинейное сравнение.

Тема 3. Простые вещества (74)

Положение металлов и неметаллов в периодической системе химических элементов Д. И. Менделеева. Важнейшие простые вещества -

металлы: железо, алюминий, кальций, магний, натрий, калий. Общие физические свойства металлов.

Важнейшие простые вещества - неметаллы, образованные атомами кислорода, водорода, азота, серы, фосфора, углерода. Способность атомов химических элементов к образованию нескольких простых веществ - аллотропия. Аллотропные модификации кислорода, фосфора и олова. Металлические и неметаллические свойства простых веществ. Относительность деления простых веществ на металлы и неметаллы.

Постоянная Авогадро. Количество вещества. Моль. Молярная масса. Молярный объем газообразных веществ. Кратные единицы количества вещества — миллимоль и киломоль, миллимолярная и киломолярная массы вещества, миллимолярный и киломолярный объемы газообразных веществ.

Расчеты с использованием понятий «количество вещества», «молярная масса», «молярный объем газов», «постоянная Авогадро».

Предметные результаты обучения

- •использовать при характеристике веществ понятия: «металлы», «пластичность», «теплопроводность», «электропроводность», «неметаллы», «аллотропия», «аллотропные видоизменения, или модификации»;
- •описывать положение элементов-металлов и элементов-неметаллов в Периодической системе химических элементов Д. И. Менделеева;
- •классифицировать простые вещества на металлы и неметаллы, элементы;
- •определять принадлежность неорганических веществ к одному из изученных классов металлы и неметаллы;
- •доказывать относительность деления простых веществ на металлы и неметаллы;
 - •характеризовать общие физические свойства металлов;
 - •устанавливать причинно-следственные связи между строением атома и

химической связью в простых веществах — металлах и неметаллах;

- •объяснять многообразие простых веществ таким фактором, как аллотропия;
- •описывать свойства веществ (на примерах простых веществ металлов и неметаллов);
- •соблюдать правила техники безопасности при проведении наблюдений и лабораторных опытов;
- •использовать при решении расчетных задач понятия: «количество вещества», «моль», «постоянная Авогадро», «молярная масса», «молярный объем газов», «нормальные условия»;
- •проводить расчеты с использованием понятий: «количество вещества», «молярная масса», «молярный объем газов», «постоянная Авогадро».

Метапредметные результаты обучения

Учащийся должен уметь:

- •составлять конспект текста;
- •самостоятельно использовать непосредственное наблюдение;
- •самостоятельно оформлять отчет, включающий описание наблюдения, его результатов, выводов;
 - •выполнять полное комплексное сравнение;
 - выполнять сравнение по аналогии

Тема 4. Соединения химических элементов (13 ч)

Степень окисления. Определение степени окисления элементов по химической формуле соединения. Составление формул бинарных соединений, общий способ их называния. Бинарные соединения: оксиды, хлориды, сульфиды и др. Составление их формул. Представители оксидов: вода, углекислый газ и негашеная известь. Представители летучих водородных соединений: хлороводород и аммиак.

Основания, их состав и названия. Растворимость оснований в воде. Таблица растворимости гидроксидов и солей в воде. Представители щелочей: гидроксиды натрия, калия и кальция. Понятие о качественных реакциях. Индикаторы. Изменение окраски индикаторов в щелочной среде.

Кислоты, их состав и названия. Классификация кислот. Представители кислот: серная, соляная и азотная. Изменение окраски индикаторов в кислотной среде.

Соли как производные кислот и оснований. Их состав и названия. Растворимость солей в воде. Представители солей: хлорид натрия, карбонат и фосфат кальция.

Аморфные и кристаллические вещества.

Межмолекулярные взаимодействия. Типы кристаллических решеток: ионная, атомная, молекулярная и металлическая. Зависимость свойств веществ от типов кристаллических решеток.

Вещества молекулярного и немолекулярного строения. Закон постоянства состава для веществ молекулярного строения.

Чистые вещества и смеси. Примеры жидких, твердых и газообразных смесей. Свойства чистых веществ и смесей. Их состав. Массовая и объемная доли компонента смеси. Расчеты, связанные с использованием понятия доля.

Расчётные задачи. 1. Расчет массовой и объемной долей компонентов смеси веществ. 2. Вычисление массовой доли вещества в растворе по известной массе растворенного вещества и массе растворителя. 3. Вычисление массы растворяемого вещества и растворителя, необходимых для приготовления определенной массы раствора с известной массовой долей растворенного вещества.

Контрольная работа по разделу

Предметные результаты обучения

Учащийся должен уметь:

•использовать при характеристике веществ понятия: «степень окисления», «валентность», «оксиды», «основания», «щелочи», «качественная реакция», «индикатор», «кислоты», «кислородсодержащие кислоты», «бескислородные кислоты», «кислотная среда», «щелочная среда»,

«нейтральная среда», «шкала pH», «соли», «аморфные вещества», «кристаллические вещества», «кристаллическая решетка», «ионная кристаллическая решетка», «атомная кристаллическая решетка», «молекулярная кристаллическая решетка», «металлическая кристаллическая решетка», «смеси»;

- •классифицировать сложные неорганические вещества по составу на оксиды, основания, кислоты и соли; основания, кислоты и соли по растворимости в воде; кислоты по основности и содержанию кислорода;
- •определять принадлежность неорганических веществ к одному из изученных классов (оксиды, летучие водородные соединения, основания, кислоты, соли) по формуле;
- •описывать свойства отдельных представителей оксидов (на примере воды, углекислого газа, негашеной извести), летучих водородных соединений (на примере хлороводорода и аммиака), оснований (на примере гидроксидов натрия, калия и кальция), кислот (на примере серной кислоты) и солей (на примере хлорида натрия, карбоната кальция, фосфата кальция);
 - •определять валентность и степень окисления элементов в веществах;
- •составлять формулы оксидов, оснований, кислот и солей по валентностям и степеням окисления элементов, а также зарядам ионов, указанным в таблице растворимости кислот, оснований и солей;
- •составлять названия оксидов, оснований, кислот и солей; сравнивать валентность и степень окисления; оксиды, основания, кислоты и соли по составу;
- •использовать таблицу растворимости для определения растворимости веществ;
- •устанавливать генетическую связь между оксидом и гидро-ксидом и наоборот; причинно-следственные связи между строением атома, химической связью и типом кристаллической решетки химических соединений;

- •характеризовать атомные, молекулярные, ионные металлические кристаллические решетки; среду раствора с помощью шкалы рН;
- •приводить примеры веществ с разными типами кристаллической решетки;
- проводить наблюдения за свойствами веществ и явлениями,
 происходящими с веществами;
- •соблюдать правила техники безопасности при проведении наблюдений и опытов;
- •исследовать среду раствора с помощью индикаторов; экспериментально различать кислоты и щелочи, пользуясь индикаторами;
- •использовать при решении расчетных задач понятия «массовая доля элемента в веществе», «массовая доля растворенного вещества», «объемная доля газообразного вещества»;
- •проводить расчеты с использованием понятий «массовая доля элемента в веществе», «массовая доля растворенного вещества», «объемная доля газообразного вещества».

Метапредметные результаты обучения

- •составлять на основе текста таблицы, в том числе с применением средств ИКТ;
 - •под руководством учителя проводить опосредованное наблюдение
- •под руководством учителя оформлять отчет, включающий описание эксперимента, его результатов, выводов;
- •осуществлять индуктивное обобщение (от единичного достоверного к общему вероятностному), т. е. определять общие существенные признаки двух и более объектов и фиксировать их в форме понятия или суждения;
- •осуществлять дедуктивное обобщение (подведение единичного достоверного под общее достоверное), т. е. актуализировать понятие или суждение, и отождествлять с ним соответствующие существенные признаки

одного или более объектов;

- •определять аспект классификации;
- •осуществлять классификацию;
- •знать и использовать различные формы представления классификации.

Тема 5. Изменения, происходящие с веществами (104)

Понятие явлений как изменений, происходящих с веществами. Явления, связанные с изменением кристаллического строения вещества при постоянном его составе, физические явления. Физические явления в химии: дистилляция, кристаллизация, выпаривание и возгонка веществ, центрифугирование.

Явления, связанные с изменением состава вещества, - химические реакции. Признаки и условия протекания химических реакций. Понятие об экзо- и эндотермических реакциях. Реакции горения как частный случай экзотермических реакций, протекающих с выделением света.

Закон сохранения массы веществ. Химические уравнения. Значение индексов и коэффициентов. Составление уравнений химических реакций.

Расчеты по химическим уравнениям. Решение задач на нахождение количества вещества, массы или объема продукта реакции по количеству вещества, массе или объему исходного вещества. Расчеты с использованием понятия «доля», когда исходное вещество дано в виде раствора с заданной массовой долей растворенного вещества или содержит определенную долю примесей.

Реакции разложения. Понятие о скорости химических реакций. Катализаторы. Ферменты.

Реакции соединения. Каталитические и некаталитические реакции. Обратимые и необратимые реакции.

Реакции замещения. Электрохимический ряд напряжений металлов, его использование для прогнозирования возможности протекания реакций между металлами и растворами кислот. Реакции вытеснения одних металлов из растворов их солей другими металлами.

Реакции обмена. Реакции нейтрализации. Условия протекания реакций обмена в растворах до конца.

Типы химических реакций (по признаку «число и состав исходных веществ и продуктов реакции») на примере свойств воды. Реакция разложения - электролиз воды. Реакции соединения - взаимодействие воды с оксидами металлов и неметаллов. Понятие «гидроксиды». Реакции замещения - взаимодействие воды с щелочными и щелочноземельными металлами. Реакции обмена (на примере гидролиза сульфида алюминия и карбида кальция).

3 лабораторные работы.

Контрольная работа по разделу.

Предметные результаты обучения:

Учащийся должен уметь:

- •классифицировать химические реакции по числу и составу исходных веществ и продуктов реакции; тепловому эффекту; направлению протекания реакции; участию катализатора;
- •использовать таблицу растворимости для определения возможности протекания реакций обмена; электрохимический ряд напряжений (активности) металлов для определения возможности протекания реакций между металлами и водными растворами кислот и солей;
- •наблюдать и описывать признаки и условия течения химических реакций, делать выводы на основании анализа наблюдений за экспериментом;
- •проводить расчеты по химическим уравнениям на нахождение количества, массы или объема продукта реакции по количеству, массе или объему исходного вещества; с использованием понятия «доля», когда исходное вещество дано в виде раствора с заданной массовой долей растворенного вещества или содержит определенную долю примесей.

Метапредметные результаты обучения

- •составлять на основе текста схемы, в том числе с применением средств ИКТ;
- •самостоятельно оформлять отчет, включающий описание эксперимента, его результатов, выводов;
- •использовать такой вид мысленного (идеального) моделирования, как знаковое моделирование (на примере уравнений химических реакций);
 - •различать объем и содержание понятий;
 - •различать родовое и видовое понятия;
 - •осуществлять родовидовое определение понятий.

Тема 6. Химический практикум «Простейшие операции с веществом» (6 ч)

- Практическая работа № 1. Приёмы обращения с лабораторным оборудованием
- Практическая работа № 2. Наблюдение за изменениями, происходящими с горящей свечой, и их описание
 - Практическая работа № 3. Анализ почвы и воды
 - Практическая работа № 4. Признаки химических реакций
- Практическая работа № 5. Приготовление раствора сахара и расчёт его массовой доли в растворе

Предметные результаты обучения:

- •обращаться с лабораторным оборудованием и нагревательными приборами в соответствии с правилами техники безопасности;
- •выполнять простейшие приемы работы с лабораторным оборудованием: лабораторным штативом; спиртовкой;
- •наблюдать за свойствами веществ и явлениями, происходящими с веществами;
- •описывать химический эксперимент с помощью естественного (русского или родного) языка и языка химии;

- •делать выводы по результатам проведенного эксперимента;
- •готовить растворы с определенной массовой долей растворенного вещества;
- •приготовить раствор и рассчитать массовую долю растворенного в нем вещества.

Метапредметные результаты обучения

Учащийся должен уметь:

самостоятельно использовать опосредованное наблюдение.

Тема 7. Растворение, растворы и свойства растворов электролитов (18 ч)

Понятие об электролитической диссоциации. Электролиты и неэлектролиты. Механизм диссоциации электролитов с различным типом химической связи. Степень электролитической диссоциации. Сильные и слабые электролиты.

Основные положения теории электролитической диссоциации. Ионные уравнения реакций. Условия протекания реакции обмена между электролитами до конца в свете ионных представлений.

Классификация ионов и их свойства.

Кислоты, их классификация. Диссоциация кислот и их свойства в свете теории электролитической диссоциации. Молекулярные и ионные уравнения реакций кислот. Взаимодействие кислот с металлами. Электрохимический ряд напряжений металлов. Взаимодействие кислот с оксидами металлов. Взаимодействие кислот с основаниями - реакция нейтрализации. Взаимодействие кислот с солями. Использование таблицы растворимости для характеристики химических свойств кислот.

Основания, их классификация. Диссоциация оснований и их свойства в свете теории электролитической диссоциации. Взаимодействие оснований с кислотными оксидами и солями. Использование таблицы кислотами. растворимости характеристики химических свойств оснований. ДЛЯ Разложение оснований нерастворимых при нагревании. Соли, их классификация и диссоциация различных типов солей. Свойства солей в свете теории электролитической диссоциации. Взаимодействие солей с металлами, условия протекания этих реакций. Взаимодействие солей с кислотами, основаниями и солями. Использование таблицы растворимости для характеристики химических свойств солей.

Обобщение сведений об оксидах, их классификации и химических свойствах.

Генетические ряды металлов и неметаллов. Генетическая связь между классами неорганических веществ

Окислительно-восстановительные реакции. Окислитель и восстановитель, окисление и восстановление.

Реакции ионного обмена и окислительно-восстановительные реакции. Составление уравнений окислительно-восстановительных реакций методом электронного баланса.

Свойства простых веществ - металлов и неметаллов, кислот и солей в свете представлений об окислительно-восстановительных процессах.

Предметные результаты обучения:

- •использовать при характеристике превращений веществ понятия: «раствор», «электролитическая диссоциация», «электролиты», «неэлектролиты», «степень диссоциации», «сильные электролиты», «слабые электролиты», «катионы», «анионы», «кислоты», «основания», «соли», «ионные реакции», «несолеобразующие оксиды», «солеобразующие оксиды», «основные оксиды», «кислотные оксиды», «средние соли», «кислые соли», «основные соли», «генетический ряд», «окислительновосстановительные реакции», «окислитель», «восстановитель», «окисление», «восстановление»;
 - •описывать растворение как физико-химический процесс;
- •иллюстрировать примерами основные положения теории электролитической диссоциации; генетическую взаимосвязь между веществами (простое вещество оксид гидроксид соль);

- •характеризовать общие химические свойства кислотных и основных оксидов, кислот, оснований и солей с позиций теории электролитической диссоциации; сущность электролитической диссоциации веществ с ковалентной полярной и ионной химической связью; сущность окислительно-восстановительных реакций;
- •приводить примеры реакций, подтверждающих химические свойства кислотных и основных оксидов, кислот, оснований и солей; существование взаимосвязи между основными классами неорганических веществ;
- •классифицировать химические реакции по «изменению степеней окисления элементов, образующих реагирующие вещества»;
- диссоциации •составлять уравнения электролитической кислот, оснований и солей; молекулярные, полные и сокращенные ионные уравнения уравнения реакций c участием электролитов; окислительнореакций, используя метод электронного восстановительных баланса; уравнения реакций, соответствующих последовательности («цепочке») превращений неорганических веществ различных классов;
- •определять окислитель и восстановитель, окисление и восстановление в окислительно-восстановительных реакциях;
- •устанавливать причинно-следственные связи: класс вещества химические свойства вещества;
- •наблюдать и описывать реакции между электролитами с помощью естественного (русского или родного) языка и языка химии;
- •проводить опыты, подтверждающие химические свойства основных классов неорганических веществ.

Метапредметные результаты обучения

- •делать пометки, выписки, цитирование текста;
- •составлять доклад;
- •составлять на основе текста графики, в том числе с применением

средств ИКТ;

- •владеть таким видом изложения текста, как рассуждение;
- •использовать такой вид мысленного (идеального) моделирования, как знаковое моделирование (на примере уравнений реакций диссоциации, ионных уравнений реакций, полуреакций окисления-восстановления);
- •различать компоненты доказательства (тезис, аргументы и форму доказательства);
 - •осуществлять прямое индуктивное доказательство.

Шесть лабораторных работ.

Одна практическая работа.

Две контрольные работы по разделу.

Предметные результаты обучения

Учащийся должен уметь:

- •обращаться с лабораторным оборудованием и нагревательными приборами в соответствии с правилами техники безопасности;
- •выполнять простейшие приемы обращения с лабораторным оборудованием: лабораторным штативом, спиртовкой;
- •наблюдать за свойствами веществ и явлениями, происходящими с веществами;
- •описывать химический эксперимент с помощью естественного (русского или родного) языка и языка химии;
 - •делать выводы по результатам проведенного эксперимента.

Метапредметные результаты обучения

- •определять, исходя из учебной задачи, необходимость непосредственного или опосредованного наблюдения;
 - •самостоятельно формировать программу эксперимента.

Содержание тем учебного предмета 9 класс 9 класс (2ч в неделю; всего 68 ч)

Тема 1. Введение. Общая характеристика химических элементов (10 часов)

Характеристика элемента по его положению в периодической системе химических элементов Д. И. Менделеева. Свойства оксидов, кислот, оснований и солей в свете теории электролитической диссоциации и процессов окисления-восстановления. Генетические ряды металла и неметалла.

Понятие о переходных элементах. Амфотерность. Генетический ряд переходного элемента.

Периодический закон и периодическая система химических элементов Д. И. Менделеева в свете учения о строении атома. Их значение.

Химическая реакция, скорость хим.реакций, катализаторы и катализ.

Четыре лабораторные работы.

Тема 2. Металлы (15 ч)

Положение металлов в периодической системе химических элементов Д. И. Менделеева. Металлическая кристаллическая решетка и металлическая химическая связь. Общие физические свойства металлов. Сплавы, их свойства и значение. Химические свойства металлов как восстановителей. Электрохимический ряд напряжений металлов и его использование для химических свойств конкретных металлов. Способы характеристики получения металлов: пиро-, гидро- и электрометаллургия. Коррозия металлов способы борьбы c ней. И Общая характеристика щелочных металлов. Металлы в природе. Общие способы их получения. Строение атомов. Щелочные металлы простые вещества, их физические и химические свойства. Важнейшие соединения щелочных металлов — оксиды, гидроксиды и соли (хлориды, карбонаты,

сульфаты, нитраты), их свойства и применение в народном хозяйстве. Калийные

Общая характеристика элементов главной подгруппы II группы. Строение атомов. Щелочноземельные металлы - простые вещества, их физические химические свойства. Важнейшие И соединения щелочноземельных металлов — оксиды, гидроксиды и соли (хлориды, карбонаты, нитраты, сульфаты и фосфаты), их свойства и применение в народном хозяйстве.

Алюминий. Строение атома, физические и химические свойства простого вещества. Соединения алюминия оксид и гидроксид, их амфотерный характер. Важнейшие соли алюминия. Применение алюминия и его соединений.

Железо. Строение атома, физические и химические свойства простого вещества. Генетические ряды Fe^{2+} и Fe^{3+} . Качественные реакции на Fe^{2+} и Fe^{3+} . Важнейшие соли железа. Значение железа, его соединений и сплавов в природе и народном хозяйстве.

Демонстрации. Образцы щелочных и щелочноземельных Образцы сплавов. Взаимодействие натрия, лития и кальция с водой. Взаимодействие натрия и магния с кислородом. Взаимодействие металлов с (II)(III).неметаллами. Получение гкдроксидов железа И Лабораторные опыты. 2. Ознакомление с образцами металлов. Взаимодействие металлов с растворами кислот и солей. 4. Ознакомление с образцами природных соединений: а) натрия; б) кальция; в) алюминия; г) железа. 5. Получение гидроксида алюминия и его взаимодействие с растворами кислот и щелочей. 6. Качественные реакции на ионы Fe^{2+} и Fe^{3+} .

Семь лабораторных работ.

Одна контрольная работа по разделу.

Тема 3. Неметаллы (21 ч)

Общая характеристика неметаллов: положение в периодической системе Д.

И. Менделеева, особенности строения атомов, электроотрицательность как мера «неметалличности», ряд электроотрицательности. Кристаллическое строение неметаллов - простых веществ. Аллотропия. Физические свойства неметаллов. Относительность понятий «металл», «неметалл». Водород. Положение в периодической системе химических элементов Д. И. Менделеева. Строение атома и молекулы. Физические и химические свойства водорода, его получение и применение.

Общая характеристика галогенов. Строение атомов. Простые вещества, их физические и химические свойства. Основные соединения галогенов (галогеноводороды и галогениды) их свойства. Качественная реакция на хлорид-ион Краткие сведения о хлоре, броме, фторе и иоде. Применение галогенов и их соединений в народном хозяйстве.

Сера. Строение атома, аллотропия, свойства и применение ромбической серы. Оксиды серы (П) и (VI), их получение, свойства и применение Сероводородная и сернистая кислоты. Серная кислота и ее соли, их применение в народно хозяйстве. Качественная реакция на сульфат-ион.

Азот. Строение атома и молекулы, свойства простого вещества. Аммиак, строение, свойства, получение и применение. Соли аммония, их свойств и применение. Оксиды азота (П) и (IV). Азотная кислота, ее свойства и применение. Нитраты и нитриты, проблема их содержания в сельскохозяйственной продукции. Азотные удобрения.

Фосфор. Строение атома, аллотропия, свойства белого и красного фосфора, их применение. Основные соединения: оксид фосфора (V), ортофосфорная кислота и фосфаты. Фосфорные удобрения.

Углерод. Строение атома, аллотропия, свойства аллотропных модификаций, применение. Оксиды углерода (II) и (IV), их свойства и применение. Качественная реакция на углекислый газ. Карбонаты: кальцит, сода, поташ, их значение в природе и жизни человека. Качественная реакция на

Кремний. Строение атома, кристаллический кремний, его свойства и применение. Оксид кремния (IV), его природные разновидности. Силикаты. Значение соединений кремния в живой и неживой природе. Понятие о силикатной промышленности.

Демонстрации. Образцы галогенов - простых веществ. Взаимодействие галогенов с натрием, алюминием. Вытеснение хлором брома или иода из растворов их солей.

Взаимодействие серы с металлами, водородом и кислородом.

Взаимодействие концентрированной азотной кислоты с медью. Поглощение углем растворенных веществ или газов. Восстановление меди из ее оксида углем. Образцы природных соединений хлора, серы, фосфора, углерода, кремния. Образцы важнейших для народного хозяйства сульфатов, нитратов, карбонатов, фосфатов. Образцы стекла, керамики, цемента.

Девять лабораторных работ.

Одна контрольная работа по разделу.

Тема 3. Практикум по неорганической химии (5 ч)

- 1. Практическая работа 1. «Получение амфотерного гидроксида и изучение его свойств»
 - 2. Практическая работа 2. «Получение аммиака и изучение»
- 3. Практическая работа 3 (2 часа) «Решение экспериментальных задач на распознавание важнейших катионов и анионов»
- 4. Практическая работа 4 «Практическое осуществление переходов»

Тема 4. «Органические вещества» (12 часов)

Вещества органические и неорганические, относительность понятия «органические вещества». Причины многообразия органических соединений. Химическое строение органических соединений. Молекулярные и структурные формулы органических веществ. Метан и этан: строение молекул. Горение метана и этана. Дегидрирование этана. Применение метана.

Химическое строение молекулы этилена. Двойная связь. Взаимодействие этилена с водой. Реакции полимеризации этилена. Полиэтилен и его значение.

Понятие о предельных одноатомных спиртах на примерах метанола и этанола. Трехатомный спирт - глицерин.

Понятие об альдегидах на примере уксусного альдегида. Окисление альдегида в кислоту.

Одноосновные предельные карбоновые кислоты на примере уксусной кислоты. Ее свойства и применение. Стеариновая кислота как представитель жирных карбоновых кислот.

Реакции этерификации и понятие о сложных эфирах. Жиры как сложные эфиры глицерина и жирных кислот.

Понятие об аминокислотах. Реакции поликонденсации. Белки, их строение и биологическая роль

Понятие об углеводах. Глюкоза, ее свойства и значение. Крахмал и целлюлоза (в сравнении), их биологическая роль.

Одна контрольная работа.

Тема 5. Обобщение знаний по химии за курс основной школы (5 ч)

Физический смысл порядкового номера элемента в периодической системе химических элементов Д. И. Менделеева, номеров периода и группы. Закономерности изменения свойств элементов и их соединений в периодах и группах в свете представлений о строении атомов элементов. Значение периодического закона.

Типы химических связей и типы кристаллических решеток. Взаимосвязь
 строения и свойств веществ.

Классификация химических реакций по различным признакам (число и состав реагирующих и образующихся веществ; тепловой эффект;

использование катализатора; направление; изменение степеней окисления атомов).

Простые и сложные вещества. Металлы и неметаллы. Генетические ряды металла, неметалла и переходного металла. Оксиды (основные, амфотерные и кислотные), гидроксиды (основания, амфотерные гидроксиды и кислоты) и соли: состав, классификация и общие химические свойства в свете теории электролитической диссоциации и представлений о процессах окислениявосстановления.

Одна контрольная работа.

3. Тематическое планирование 2 ч. в неделю в 8-9 классах

8 класс

№	Тема	Кол-	Лаборат. работ	Практич. работ	Контрол работ		
		во часов	paoor	раоот	раоот		
1	Введение	4	0	0	0		
2	Атомы химических элементов	10	0	0	1		
3	Простые вещества	7	0	0	0		
4	Соединения хим.элементов	13	0	0	1		
5	Изменения, происходящие с веществами (хим.практикум)	10	3	0	1		
6	Простейшие операции с веществами	6	0	6	0		
7	Растворение. Растворы. Свойства растворов электролитов	18	6	1	2		
	Итого за год	68	9	7	5		
9 класс							
1	Общая характеристика хим. элементов и хим. реакций	10	4	0	0		

2	Металлы	15	7	0	1
3	Неметаллы	21	9	0	1
4	Практикум по неорганической химии	5	0	5	0
5	Органические вещества	12	0	0	1
6	Обобщение знаний по химии за курс основной школы	5	0	0	1
	Итого за год	68	20	5	4